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Laterally converging flow. Part 2. 
Temporal wall shear stress 
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Instantaneous measurements of the wall shear stress were made in the laterally 
converging duct also used for mean measurements in part 1 and were analysed by 
conditional sampling and by conditional averaging. The sidewalls of the duct were 
adjusted to provide (i) a straight duct of constant rectangular cross-section and (ii) 
laterally (spanwise) converging ducts resulting in streamwise acceleration of the flow. 
The Reynolds number varied from 7600 to 47 200 and the dimensionless acceleration 
parameter K ,  = ( v / V 2 )  dV/dx  ranged from 0 to 3.4 x lop6, yielding a variation of the 
flow regime from fully turbulent to nearly laminar. The typical burst pattern, or 
conditionally averaged time history of the wall shear stress, resembled the time 
history of the streamwise velocity component deduced a t  y+ = 15 by Blackwelder and 
Kaplan using the same general technique. For fully developed flows, inner or wall 
scaling of the bursting frequency was found to be less dependent upon Reynolds 
number than outer scaling ; other characteristics examined varied with both inner 
and outer scaling. For converging flows measurements of bursting characteristics 
essentially confirmed the indicated flow regimes deduced in part 1 and showed that 
the measured characteristic that was most affected by acceleration was the bursting 
frequency. All characteristics varied with acceleration, but the variation was 
generally less when normalized by wall variables rather than when normalized by 
outer variables. 

1. Introduction 
In  the companion paper (part 1) by Murphy, Chambers & McEligot (1983), the flow 

state in a laterally converging duct was inferred from measurements of mean wall 
shear stresses, local pressure gradients and integral streamwise pressure differences. 
The present paper examines the correspondence between those observations and the 
turbulence structure, in particular the bursting phenomenon, via conditionally 
averaged measurements of the temporal wall shear-stress signal ~ ( t ) . $  In  the process, 
several important questions concerning bursting are answered. 

The bursting phenomenon in the viscous layer has been described well by Corino 

Present address : Lockheed-Georgia Company, Marietta, GA 30063. 
1 Since the only shear stress measured in the present work is at the surface, the usual subscript 

w or 0 will be dropped from 7, in the remainder of this paper. 
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& Brodkey (1969), Kline et al. (1967), Offen & Kline (1974) and others, as well as by 
recent reviews (Willmarth 1975; Cantwell 1981), so only the literature pertinent to 
the present study will be reviewed here. With Kim, Kline & Reynolds (1971) and 
Blackwelder & Kaplan (1976) we adopt the term ‘ bursting ’ or ‘ bursting phenomenon ’ 
for the overall process. For convenience in description, the phases of the process will 
be termed (a )  a deceleration or ejection, (b)  a rapid acceleration or sweep, and ( c )  a 
relatively quiescent process, or more gradual deceleration following the sweep. 
Blackwelder & Kaplan (1976) have demonstrated one version of the typical bursting 
signal by conditional averaging of the fluctuation in the streamwise velocity 
component; their technique is applied to T in the present application. (Hereinafter 
we will usually refer to their paper as BK.) With calculations based on a theoretical 
model for coherent structures in wall turbulence, Landahl(l980) has found qualitative 
agreement with their conditionally sampled data. 

The first question is whether 7 ( t )  can be employed to obtain evidence about the 
bursting phenomenon and its stages. The idea comes from examination of the 
simultaneous measurements of u(t) and au( t ) /ay  conducted by Eckelmann (1974). He 
showed that the fluctuating shear-stress signal from a wall shear-stress sensor 
correlates with velocity fluctuations measured with hot wires positioned in the flow 
a t  dimensionless distances from the wall of up to  y+ = 25. Eckelmann’s correlation 
indicates that  the temporal history of the shear-stress signal should provide a 
reasonable picture of turbulent events in the viscous layer, 0 < y+ < 30 in unacce- 
lerated flows. I n  addition, Brown & Thomas (1977) have shown that the low-frequency 
fluctuations of a wall-shear sensor can be correlated with the low-frequency 
fluctuations of a velocity sensor for the range 005 < y/S < 0.75 in a turbulent 
boundary layer. Eckelmann (1980 personal communication) notes that the detailed 
similarity between the two signals decreases with distance from the wall, so one must 
investigate whether one sees the same burst at y+ x 15, the triggering location of BK, 
and at the wall. Some investigators expect that  a conditionally averaged signal from 
a wall sensor will correspond to  the conditionally averaged Reynolds shear stress (BK, 
figure 14). Thus a related question concerns the shape of the typical burst observed 
with a wall sensor, i.e. will our camel have one or two humps, or none? 

A second question concerns the appropriate scaling of the bursting frequency fb 
in non-accelerated flows. As discussed below, some investigators have suggested 
non-dimensionalization with respect to a characteristic time for the wall, or inner 
region, v / ( u J 2 ;  others advocate a time characteristic of the outer region, &/Urn.  For 
a fully developed internal flow the two resulting non-dimensional times can be related 
through their definitions as 

where Re, is the Reynolds number based on hydraulic diameter D, and bulk velocity 
V ,  and 6 has been interpreted as is, the half-spacing of a duct, or rw, the radius of 
a pipe. Thus if a relationship can be found for one, i t  can be transformed to  the other 
since empirical relationships for c,(Re,) exist. 

The question becomes one of whether either scaling will give a non-dimensional 
time or frequency which is independent of Reynolds number. The question of scaling 
is an important one for a better understanding of turbulent behaviour because inner 
scaling implies that  the lift-up of the low-speed streak and the subsequent ejection 
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(Offen & Kline 1974) are derived from a wall-flow instability; theoretical models 
showing such instabilities have been proposed (Black 1968). (However, these 
instabilities cannot be unambiguously accepted as the causes of bursting because the 
instability models usually require (Black 1968) that the streamwise velocity of the 
ejected fluid be greater than the local mean velocity corresponding to the y+ position 
of the ejection, rather than the velocity deficit actually observed.) Supporting 
evidence for inner scaling is offered by the flow-visualization data of Offen & Kline 
(1974), who found that sweeps, low-speed-streak lift-ups, and bursts were intimately 
connected; indeed, ‘sweeps initiate bursts’, and ‘sweeps originate in the inner layer ’. 

Outer scaling implies that the bursting process is imposed by large disturbances 
already present in the outer flow. However, even Rao, Narasimha & Badri Narayanan 
(1971), early proponents of outer scaling, admitted that the ‘origin of the bursting 
phenomenon cannot be traced directly. . . to the outer interface.’ Outer scaling has 
its theoretical support too. The analysis by Schubert & Corcos (1967) attempted to 
view the inner layer as driven by the outer flow, but failed to predict Reynolds stresses 
of the right order. Brown & Thomas (1977) inferred from their measurements that 
the low-frequency fluctuations of the wall shear stress are possibly driven by large-scale 
structures. 

Attempts to resolve the scaling issues experimentally have yielded mixed results. 
Black (1966) found that the bursting frequencies scaled with wall variables so that 
(u*)’/Vfb X 110. Kline et al. (1967) reported essentially the same finding for a 
boundary-layer flow, as did Corino & Brodkey (1969) for fully developed flow in a 
pipe. Sharma & Willmarth (1980) found the non-dimensional bursting frequency to 
be approximately constant over the range 1 2 y+ 2 17 when based on wall variables 
(this observation provides further support for the use of a wall-mounted sensor to 
investigate the bursting process as in the present work). In contrast, Rao et al. (1971) 
suggested that outer scaling resulted in Reynolds-number independence for 
unaccelerated flows, and that Uoo/6f,, = 5 or tT, /6*fb = 32, where 6* is the 
displacement thickness. 

The results of Rao et al. must be regarded with some caution for two reasons. First, 
Blackwelder & Haritonidis (1981) found that sensor lengths greater than 20 viscous 
lengths yield decreased bursting frequencies as a consequence of spatial averaging. 
In a study conducted over a range of Reynolds numbers, the viscous length unit 
decreases with Reynolds number and the sensor becomes relatively larger. Black- 
welder & Haritonidis suggest that the trends reported by Rao et al. are influenced by 
such effects, and that, when corrected for this spatial averaging, the results would 
support inner scaling. 

Additionally, the finding of Rao et al. was based upon wind-tunnel measurements 
in which a single hot-wire signal was differentiated and a discrimination level varied 
to obtain a maximum f b  for each run. (It was stated that, as the discrimination level 
was set either too low or too high, f b  would decrease.) Offen & Kline (1974) indicate 
that such burst detection by a single sensor using autocorrelations has little chance 
of success, except very near the wall, because the individual bursts vary greatly in 
size. Thus detection techniques based upon spatial rather than temporal coherence 
are preferred. Flow-visualization studies, such as those by Kline et al. (1967) and 
Corino & Brodkey (1969), emphasize the more easily detected spatial coherence of 
bursts. A fixed point sensor can only measure the less organized temporal behaviour 
of the flow. Using the same apparatus as Kline et al., Kim et al. (1971) determined 
bursting frequencies for two flows from visualization studies and from the disputed 
autocorrelation method with a hot wire at y+ = 14. Because the Reynolds numbers 
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of the two flows were nearly equal, the results could be interpreted as supporting 
either inner or outer scaling. 

Strickland & Simpson (1975) measured bursting frequencies in two ways: (i) the 
time between peaks in the autocorrelation of a wall-mounted shear-stress sensor was 
taken as a measure of the time between bursts, giving fbl,  and (ii) fbz was taken to 
be the frequency at the maximum in the first moment of the curve of power- 
spectral-density versus frequency. They found agreement of the two frequencies to 
within 15%. While [J,/&fb ranged from 7 to 14, in fair agreement with Rao et al., 
most of the flows examined were decelerating flows. For the two runs where the flow 
was mildly accelerated, u,/dfb was approximately 1 1 ,  twice the value recommended 
by Rao et al. The Reynolds numbers of the two flows were close enough (Re, = 2240 
and 3520) that, had a Reynolds-number dependence existed, it would not have been 
easily apparent. Indeed, in related work Strickland (1973) reported a weak Reynolds- 
number dependence. 

Wallace, Brodkey & Eckelmann (1977) attempted to recognize bursts using a 
pattern-recognition technique based upon the time derivatives of hot-wire velocity 
sensors. They found that O,/&fb ranged from 5 a t  y+ = 3 to  2 a t  y+ = 300. Although 
the agreement with Rao et al. was apparently good, only a single flow was 
investigated, so that Reynolds-number independence was not substantiated. Black- 
welder & Kaplan (1976), using the variable-interval time-averaging (VITA) technique 
described below, also reported that U,/Sfb = 2.8, but, again, essentially only one 
Reynolds number was examined. 

I n  summary, convincing evidence to support Reynolds-number independence for 
either method of scaling has yet to be published. In  most studies investigators have 
not examined flows with a sufficient range of Reynolds number.? It might be 
supposed that this independence could be examined by simply combining studies (e.g. 
Wallace et al. (1977) at Re, = 430 and BK a t  Re, = 2250), but the dissimilarity of 
experimental methods, signal processing and detection criteria preclude an unambi- 
guous comparison. Accordingly, one of our objectives was to  measure a wide range 
of flows, both fully developed and accelerated, and to  determine systematically if a 
preferred form of scaling became apparent. 

We elected to use the VITA technique of BK, but, instead of employing this 
technique with hot-wire velocity sensors, we chose a wall sensor to avoid blockage 
and probe-interference effects, and, partly, to  satisfy the objections raised by Offen 
& Kline (1974) regarding single-point sensors. As mentioned above, they pointed out 
that  very near the wall the spatial variation of turbulent fluctuations is severely 
damped so that the temporal behaviour of a single sensor can become a reliable 
indicator of spatially coherent turbulent events. I n  other words, near the wall the 
temporal behaviour is not dominated by contributions from small-scale spatial 
variations, but reflects the passage of large-scale coherent structures ; the wall film 
sensor is the ultimate in near-wall sensors. Furthermore, the VITA technique adopted 
was consistently applied to  all 27 of the flows examined. Thus, even though the results 
may suffer from the usual uncertainty introduced by the subjective nature of pattern 
recognition schemes, a t  least the qualitative nature of the behaviour and trends 
reported should be correct. 

I n  addition to determining the appropriate scaling of bursting frequencies for fully 

t Preliminary results of the effects of wide ranges of Reynolds numbers and acceleration 
parameters have been presented informally by McEligot & Murphy (1978) for a converging duct 
and by Blackwelder & Haritonidis (1980) for a boundary layer; the present work extends the former 
and the manuscript by Blackwelder & Haritonidis (1981) extends the latter. 
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developed flows, we also wished to examine the effects of flow acceleration upon 
bursting. As noted in the review of Narasimha & Sreenivasan (1979) and in part 
1, a variety of experimental techniques have been used to determine or to infer the 
flow regime of an accelerating flow : whether turbulent, laminar, laminarizing, 
laminarescent, etc. Further, definitions of the phenomenon called laminarization vary 
from author to author, depending on the technique used. The question arises whether 
the flow regime inferred by a comparison between a mean wall parameter and its 
prediction (e.g. part 1 ; McEligot 1963; Moretti & Kays 1965) would correspond to 
that determined from its transient signal of a pointwise sensor (Kline et al. 1967 ; Jones 
& Launder 1972). Thus the present paper investigates whether the indications of part 
1 are consistent with temporal measurements of the bursting phenomenon in an 
accelerating flow induced by lateral convergence - at the same flow conditions in the 
same apparatus. This investigation then naturally leads to questions concerning the 
effects of acceleration on various aspects of the bursting phenomenon. 

This paper is organized to respond sequentially to the questions introduced above. 
Section 2 presents the experimental procedures employed and demonstrates that  a 
bursting signal can be identified from a wall sensor. The effects of Reynolds number 
on bursting in non-accelerated flows are examined in $3, and the results of 
acceleration due to lateral convergence are addressed in $4. Finally, the major 
conclusions are summarized in $5 .  An appendix treats some concerns related to the 
detection technique employed. 

2. The experiment 
The apparatus employed was the sector-shaped test section with pivoting siderails 

described in part 1 ; further details and tabulations of data are available (Murphy 
1979; Chambers & Murphy 1981). For convenience, a number of pertinent parameters 
and results are summarized in table 1 ,  which will be cited a t  various stages in the 
remainder of the paper. 

2.1. Ranges of variables 

Twenty-seven experimental runs were conducted over a range of conditions corres- 
ponding to part 1. Reynolds numbers based on bulk velocity V and hydraulic 
diameter D, varied from 7600 to 47200 when evaluated at the location of the wall 
sensor, x/s x 58 (from the sharp-edged entrance). Since the cross-section had an 
aspect ratio of 12 or more, D, was approximately equal to twice the plate spacing 
s. In the calculations of non-dimensional bursting periods V/Sfb the boundary-layer 
thickness S is evaluated as one-half the plate spacing; this approximation is 
considered later in the discussion of the results. 

Convergent half-angles were set at Oo, 2O, 4 O ,  8' and 16O, resulting in a range of 
dimensionless acceleration parameters KY = ( Y/ V 2 )  d V/dx, from a nominal zero to 
3.4 x Based on the results of part 1 this variation would be expected to provide 
conditions from fully turbulent to near fully laminar flows a t  the sensor; examination 
of dp(x)/dx in part 1 indicated that the apparent flow state - turbulent, laminar or 
intermediate - did not change significantly after x/s = 20. Bulk velocities varied from 
6 to  40 m/s and mean wall shear stresses fell from 0.1 to 3.6 Pa. 

2.2. Surface sensor 

The surface shear-stress sensor and its calibration and operation are described in part 
1. The heated filament of the sensor is 0.12 mm long in the flow direction and 1 mm 
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wide in the spanwise direction; it was located at x / s  = 58 on the duct centreline. The 
sensor and its support were flush with the surface to within 15 pm, which in the worst 
case (high Reynolds number) corresponded to a height of 1.5 viscous units, well 
within the viscous sublayer. 

2.3. Signat processing and burst detection 
The sensor mean voltage was measured with an integrating digital voltmeter, and 
the fluctuating component was recorded at 60 in./s on an f.m. tape recorder. Before 
recording, the fluctuating signal was filtered and amplified. The high-pass cutoff 
frequency was 0.1 Hz, 60 times smaller than the minimum bursting frequency 
determined in the experiments as shown in table 1 .  The low-pass cutoff frequency 
ranged from 500 to 20000 Hz, depending upon Reynolds number and acceleration; 
it was at  least 16 times the bursting frequency, and, more typically, about 100 times 
the bursting frequency. The taped signals were analysed at digitization rates of 
5 x 103-105 samples per second, as shown in table 1.  A BASIC program was written 
to read the digitized sensor-voltage fluctuations, to add the separately measured d.c. 
sensor voltage, and to calculate the instantaneous wall shear stress using the 
calibration relation. Additional details are presented by Chambers & Murphy (1981). 

The conditioned signal analysis was performed using the VITA technique described 
by Blackwelder & Kaplan (1976). The validity of this technique was examined in their 
original paper ; they concluded that the conditionally averaged results are closely 
related to the turbulence structure and not to the detection criteria. For further 
details the reader is referred to their paper. 

The variance of the wall shear stress was defined as 

var ( t ,  T )  = 7'(t, T ) - [ f ( t ,  T)I2, (1) 

where 7'(t, T )  is the running average of the square of the wall shear-stress signal over 
the conditional averaging period T : 

t+iT 

t-tT 
7'(t,T) = T2(t)dt, 

When T becomes very large, conventional averaging is obtained. The variance of the 
shear stress, ( l ) ,  represents a localized measure of the amplitude of a turbulent shear- 
stress fluctuation. 

In their original proposal, designed for hot-wire velocity sensors immersed in the 
flow, Blackwelder & Kaplan suggested that, since bursting is an energetic process, 
an ad hoc detection criteria could be defined as 

1 if var > k7:,,, 
0 otherwise, 

D(t) = (4) 

where k is the threshold level selected. The quantity 7,,, is the root mean square of 
the fluctuating shear stress obtained by integration over a long time, 

7f,, = lim (var), ( 5 )  
T-.w 

which is independent of time because of stationarity. BK used a value of 1.2 as k for 
their velocity measurements at  y f  = 15. 
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FIGURE 1. Typical wall shear-stress signal and detection parameters: 
Re, = 15700 and K ,  = 1.6 x 

BK also recommended that the time period T for the short-term averages be 

(6) 
calculated from the relation 

T+ = Tu2,/v = 10. 

AS noted earlier, Eckelmann (1974) showed that fluctuations of wall shear stress and 
velocity are well correlated in the wall region. The ejections, sweeps and other 
phenomena that characterize bursts also appear in this region, and hence the 
correlation suggests that  the bursting frequencies determined by either a wall sensor 
or a velocity sensor in this region would be nearly the same. Thus the recommendation 
of BK regarding the averaging time, (6), was followed with the minor exception that 
restrictions upon digitization rates available resulted in differences of f 5 yo from the 
recommended values of T. The total record lengths of the signals examined ranged 
from 4500T to 5100T, which was usually adequate. Record lengths and averaging 
times employed are shown in table 1. 

Next the threshold level k must be considered. Turbulent velocity fluctuations are 
damped as the wall is approached. However, this damping is no more rapid than the 
diminishment of y itself, so that the fluctuation of wall shear stress, i.e. the gradient 
of the velocity fluctuation a t  y = 0, is of finite value. Nevertheless, i t  would be 
fortuitous if the required value of k turned out to  be the same for the wall signal as 
BK determined for velocity a t  yf = 15. 

A typical segment of a sample record for the shear-stress fluctuation about the 
mean,? r ( t ) ,  calculated from the filtered and digitized anemometer voltage via the 
calibration relation, is presented in figure l(a).  The corresponding values of the 
short-term variance, non-dimensionalized by the r.m.s. shear stress var/r:,, and the 
detector function D(t) ,  are presented in figures 1 (b)  and (c) respectively, for k = 0.3 

t In part 1, 7 referred unambiguously to  the mean wall shear stress. In  the present paper the 
mean is represented by 7 while 7 is the fluctuation. 
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as the threshold level. It may be observed in figure 1 ( b )  that the non-dimensionalized 
variance becomes large when the shear-stress fluctuation exhibits rapid increases 
(large positive slope). Figure 1 (c) reveals that  with k = 0.3 five events believed to be 
associated with the bursting process (it will later be argued that the events are sweeps) 
are detected in this record segment. Further observation indicates that the detected 
events are characterized by sudden large increases in 7 ,  generally followed by 
somewhat slower decreases. If one examines the signal directly above the detected 
events, one may discern extremely steep slopes - or rapid accelerations - relative to 
the other fluctuations. 

The subjective nature of the choice of k is apparent in the figure. A lower value 
of k would yield a larger number of detected events, while a higher value would yield 
a lesser number. For reasons discussed in the appendix, we found it appropriate to 
reduce the value of k from 1-2 to 0 3 .  This required increase in detection sensitivity 
is believed attributable to two causes: (i) the lower magnitude of wall shear-stress 
fluctuations compared with fluctuations in velocity a t  y+ = 15, and (ii) the possibility 
that the large dimensions of the heated filament may have resulted in further 
reduction of the sensitivity to bursts as discussed below. Due to the wide variation 
of Reynolds number and acceleration both Ax+ and Az+ of the sensor filament vary 
widely, from 2 to 12 and 16 to 98 respectively. 

Kline et al. (1967) and Willmarth & Lut(1971) suggested that the spanwise 
separation between the streaks of low-speed fluid that appear in the early stages of 
bursting is Az+ x 100. Simpson (1976) measured short-time correlations between wall 
sensors with variable spacing Az+ and found high values for Azf x 10, zero for 
Az+ x 30 and maximum negative values with Az+ x 50. Likewise, Blackwelder & 
Eckelmann (1978) showed that the correlation of the streamwise wall shear-stress 
fluctuations was 0.5 when the two sensors were separated by the distance Az+ = 25, 
and the zero-crossing occurred at Az+ = 35. Consequently it would be expected that 
the sensitivity of the sensor used in this work would be muted - for example, the wider 
the non-dimensional size, the more negative fluctuations could contribute to the 
signal a t  the same time as a positive fluctuation (see Simpson’s figure 8), so that the 
total signal is smaller than the positive fluctuation. This diminished sensitivity 
provides one reason for the necessity for using a low level of threshold triggering in 
the conditional sampling. 

As Az+ increases one expects an increase in the rate of burst interception, but a 
decrease in their apparent magnitudes due to the spatial averaging. With the 
detection threshold kept constant, i t  is not clear whether the rate of detected bursts 
should increase or decrease as Az+ increases. Since the measured value of 7,ms is 
subject to the same effects, it  is believed that normalizing the signal as var /~&, should 
compensate for the size effects to some extent. However, by experimenting with 
hot-wire sensors of varying lengths l+ at y+ x 15 while applying the same detection 
scheme, Blackwelder & Haritonidis (1981) found measured bursting frequencies to 
decrease when 1+ 5 20. There is currently no evidence as to whether this trend would 
be present for wall sensors as well as immersed hot wires. The possible effects of 
non-dimensional size on the present results are also considered later when they are 
presented. 

In  the appendix, the effects of varying the threshold k are investigated. It is shown 
that our conclusions are rather insensitive to the choice even if k is either halved or 
increased by one-half. 

An additional detection criterion employed was to require that the shear stress be 
increasing a t  the beginning of an event. The occurrence of ejections would result in 
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decreases in the shear stress, whereas a sweep, an inward motion of fluid with 
increased streamwise velocity, would result in an increase in shear stress. Therefore 
this additional criterion has the effect that each burst is detected in its sweeping phase. 

Offen & Kline (1974) found, with dye and hydrogen-bubble visualization methods, 
that 83 yo of the sweeps they identified were traced to ejections - the unaccounted 
17% were felt to be due to  inadequacies in the methods they used. It appears then 
that there is little or no difference in determining burst events by either counting 
ejections or sweeps, and in the remainder of this paper the sweep frequencies reported 
will be referred to as burst frequencies. However, other quantities to be defined later 
will appropriately be referred to in terms of sweep quantities, e.g. 'sweep times'. 

The requirement that  the shear stress be increasing was implemented with a simple 
test of whether the shear stress at a point meeting the detection criterion (4) was 
greater than that a t  five points before it, following a similar technique employed by 
Blackwelder (1978). The choice of five points was arbitrary, but was felt to  be 
stringent enough to separate sweeps from other events. It was found that, when 7 was 
decreasing, very few points met the threshold criterion, indicating that the sweeps 
are the more energetic component of the bursting process a t  the wall. Thus the 
arbitrary choice of five points for the slope test was of little significance. 

2.4. The typical burstlsweep event and definition of related quantities 

The beginning of the detection of a sweep was defined as the point at which the two 
detection criteria were first satisfied. The next point at which the threshold 
criterion was not met was considered to be the end of the sweep detection. The number 
of sweeps and the time duration of the individual sweep detections were determined 
in the numerical program. The burst frequency was defined as the number of sweeps 
detected divided by the total time of the record. 

The number of sweeps detected ranged from 13 to  315, with most records having 
more than 65. The average number detected was 167. Burst frequencies varied from 
1.4 to 1280 Hz. Other details of the signal processing and some of the averaged results 
are listed in table 1 .  

An ensemble average was formed from the time history of the shear stress preceding 
and following the time of initial detection of each sweep. This conditional average 
of the shear-stress signal (7( t ) )  then could be considered to be a representation 
of the typical burstlsweep phenomenon for the run. As shown later, the typical 
pattern of these averages shows a very sharp increase in shear stress followed by a 
more gradual decline after the peak value is attained. Preceding the sweep is a 
general reduction of 7 ,  and following i t  is evidence of generally quiescent behaviour. 
The general features observed are similar to  the conditional averages of streamwise 
velocity fluctuations measured by BK at y+ = 15, but some details differ. 

In  the present study all the conditional averages of ~ ( t )  exhibit the same general 
shape. This observation provides some confidence that meaningful information can 
be deduced by applying the burst-detection scheme described above. 

In order to quantify the shape of the conditional averages, sweep times and 
magnitudes are defined. The magnitude AT is taken as the difference between the peak 
value and the minimum immediately preceding detection. With a wall sensor or a 
single wire the time elapsed during a sweep towards the wall cannot be determined 
as well as with an X-probe. For the present purposes a sweep time is defined which 
is a relative measure of the width of the averaged burst signal; it  is taken as the time 
from when the signal rises to  1-e-l of its maximum value until i t  falls through this 
level when decreasing (this definition is considered to  be an improvement over the 
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one used by Chambers & Murphy (1981)). Since the rise is quite sharp, this time 
interval is primarily a time constant for the decay of the conditioned sweep. 

3. Effects of Reynolds number 
With the convergence angle set a t  zero the test section forms a rectangular duct 

with a constant cross-section. Measurements in part 1 showed that in this configuration 
the pressure gradient becomes essentially constant after x / s  x 20, so the wall sensor 
at x/s x 58 determines the shear stress for an approximately fully developed flow. 

The data covered the range 9100 Q Re, Q 47200 in this series. Pressure-drop 
measurements, used to  calibrate the shear-stress sensor, agreed with the Blasius 
relationship cf = 2r/pVv2 = 00791 Re,+, within an average of about 6 %  with a 
maximum deviation of less than 8 yo. 

3.1. Bursting frequencies 

The bursting frequencies f b  determined with the VITA technique are presented in table 
1 .  For these fully developed runs f b  ranged from 65 to 1280 Hz ; the dimensionless 
bursting periods (reciprocal frequencies) based upon inner scaling, (u*)2/b1fb, were 
approximately constant at 180, while the outer scaled period v/6fb or 2 V/sfb ranged 
from 5 to 19. The value of (u*)2/b'fb found here is 60 % higher than that of Black (1966) ; 
the values of v/&fb are 1 4  times that of Rao et al. (1971) and nearly the same as 
the range given by Strickland & Simpson (1975). Considering the wide disparity of 
the detection techniques used, choices of threshold criteria and the subjectiveness that 
is an inescapable component of all the techniques, we regard the agreement of all these 
results, taken collectively, as surprisingly good. 

More important than the absolute values of either (U*)' /vfb or v/6fb are the 
variations of these quantities with Reynolds number ; these trends are displayed in 
figure 2. Also plotted for convenience is the dimensionless quantity v2/& (Rao et 
al. 1971); in nearly every flow V and v are known or easily estimated, but u* and 
6 often require additional calculation or separate measurement. Thus f b  could be 
estimated directly if a useful relationship for vv2 /v fb  were available. Alternative 
versions of mixed scaling, such as u* v/vfb, lack this advantage. 

There is more scatter than one would desire in each of the plots of figure 2 but, 
as mentioned earlier, (u*)'/vfb is nearly constant, whereas 2 V/sfb and V'/vfb exhibit 
Reynolds-number dependence. The straight lines drawn through the data are the 
values one would expect if (U*)'/vfb is independent of Re, and equal to 180. The 
relationship for 2 V/sfb is based on the Blasius relation for skin-friction coefficient and 
the definition, as explained in $ 1 ,  and the one for v2/vfb is a direct extension 
(Chambers & Murphy 1981). 

The agreement between the data and the trends of these relationships, 
(u*)2/vfb x constant and 2V/sfb cc Red, provides support to the thesis that scaling 
bursting frequencies with inner variables is the more useful approach for fully 
developed flow. I n  unpublished work during the writing of this manuscript, Black- 
welder (1980, personal communication), Sharma & Willmarth (1980) and Sreenivasan 
(1981 personal communication and Sreenivasan, Prabhu & Narasimha 1982) have 
reported comparable conclusions for turbulent boundary layers. 

If i t  were possible to account for the variation of wall sensor size, Ax+ by Az+, in 
the present study, i t  is likely the relationships would be affected, but the conclusion 
that inner scaling is preferable would not. Examination of the data of Blackwelder 
& Haritonidis (1981) for the effects of hot-wire length on bursting measurements 
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FIGURE 2. Average bursting periods for fully developed flows 

suggests that - if the effects on wall shear-stress sensors are similar - the bursting 
frequencies presented for our highest Reynolds numbers are too low. For inner scaling 
a burst-period curve corrected with their relationship would slope downward ; i t  would 
not be constant. It would still, however, exhibit smaller variation than a curve for 
outer scaling with the same relation applied. 

3.2. Conditionally averaged sweep patterns 

Conditionally averaged sweep patterns for the six fully developed flows are shown in 
figure 3, and i t  may be noted that the shapes are generally the same. As noted earlier, 
there are some slight differences from the conditional averages of streamwise velocity 
fluctuation measured by BK a t  y+ = 15. Their conditional averages appear more 
antisymmetric about the detection time (see their figure 10) than the present pattern 
of ~ ( t ) .  In  particular, in the present work the minimum just preceding the sharp 
increase in 7, is less severe and less abrupt; this observation might be interpreted 
partly as indicating that a t  the wall the timing of the effects of an ejection phase are 
less well correlated with the effects of the sweep than a t  y+ = 15. 

Blackwelder (1 980 personal communication) reports that  in the near-wall region 
the sweeps are the predominant events. He finds that a t  y+ w 15 the effects of 
ejections and sweeps are equally felt. Above y+ = 15 the most important aberrations 
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in the flow field are due to ejections leaving the wall. Below y+ = 15 the strongest 
changes in the streamwise velocity are primarily due to sweeps buffeting the wall area. 
This is evident in the earlier conditional averages of BK and can be seen in the 
probability-density distributions of Eckelmann (1974). Thus, at  the wall, one does 
not see a significant decelerating low-speed region before the short acceleration. 

Blackwelder reports unpublished conditional averages of the wall shear stress in 
Reichardt’s oil channel; the shapes were very similar to the present ones. Likewise, 
Zakkay, Barra & Hozumi (1979) present conditionally averaged values of wall shear 
stresses similar to those in figure 3 obtained by using both velocity and wall shear-stress 
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signals for detection. A. S. W. Thomas (1981 personal communication) also has 
mentioned finding patterns resembling ours. 

Since Eckelmann (1974) reports that  the correlation coefficient between u ( y )  and 
(du/LJy), drops to  about 50 % near y+ = 15, it  is not surprising that the velocity and 
shear-stress burst patterns differ somewhat. However, the present burst pattern 
definitely does not resemble the double-peaked pattern of the conditional averages 
of Reynolds shear stress as determined by BK. 

For examination of effects of varying the Reynolds number, the data for the six 
fully developed flows have been superimposed in figure 3 with time axes scaled again 
with outer and inner variables. There are slight, approximately systematic, variations 
in both cases. The magnitude Ar/T tends to decrease with increasing Reynolds 
number; there is a change of about 50% over the range from Re = 9100 to 47200. 
Normalized by T , ~ ,  the non-dimensional magnitude A7/7,,, decreases slightly less 
over the same range. The variation of width (or sweep time) is discussed below. The 
use of inner variables for the non-dimensional time appears to  provide slightly better 
scaling. 

The weak Reynolds-number dependence of these results may in part be a 
consequence of the fixed size of the shear-stress sensor element. As noted in the 
discussion of burst detection, since the sensor is of fixed physical size, its non- 
dimensional size, Ax+ by A&, increases with Reynolds number. Whether this 
variation affects the shapes of the conditionally averaged patterns discussed here is 
a question that is considered to  be an appropriate topic for later experiments or 
modelling. 

3.3. Sweep time 

The sweep time t ,  as defined in $2.4 is a measure of the average duration during which 
the sweep phase of the burst is most energetic or, presumably, has its highest velocity. 
It should not be confused with the mean time between sweeps or average bursting 
period, i.e. the inverse of fb. As with fb, t ,  was scaled with inner, outer and mixed 
variables; the behaviour for the fully developed flows is presented in figure 4. 

With any of the three bases for scaling time, the non-dimensional sweep time varies 
with Reynolds number, as is evident from viewing the shapes in figure 3 as well. As 
with the bursting frequency, inner scaling provides the least sensitivity to Reynolds 
number of the three. 

If one approximates the sweep time in inner variables to increase as Rei, as seen 
earlier in figure 4, relationships analogous to  the non-dimensional relation for fb can 
again be derived for outer and mixed scaling oft, via the definitions and the Blasius 
friction relation. These predicted trends are shown as solid lines on figure 4 and agree 
well with the data. 

The product of the sweep time and the bursting frequency t, fb is the ratio of average 
sweep time to average period between bursts (or sweeps) and is therefore called the 
sweep-time ratio. It represents the average fraction of time between bursts or fraction 
of total time that the most energetic part of the sweep process occurs (as defined in 
52.4; it is listed in table 1 ) .  An alternative view is that  it is like an intermittency 
function for the most energetic part of the bursting process, but its maximum is not 
necessarily unity. By considering the results in terms of inner variables in figures 2 
and 4, one can see that this fractional time or intermittency gradually increases from 
about 6 to 12 yo with some scatter as the Reynolds number is increased from 9100 
to 47 200 (on semilogarithmic co-ordinates). 
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FIGURE 4. Dimensionless sweep times for fully developed flow. 

4. Laterally converging flow 
I n  part 1 i t  was shown that streamwise pressure distributions and mean wall shear 

stresses measured in laterally converging flow agreed with numerical predictions 
based on a van Driest turbulehce model provided that the acceleration parameter 
K ,  was less than about lo-'. Above K ,  x 4 x lop6 the data corresponded to laminar 
predictions. For the intermediate range between these values, agreement could be 
obtained by empirically adjusting the parameter A+ which controls the effective 
viscous-layer thickness predicted by the model. 

By flow visualization with hydrogen bubbles and dye streaks in turbulent flow 
between two converging flat plates, Mine et al. (1967) determined that a non- 
dimensional breakup (ejection) frequency in the viscous layer decreased as the 
acceleration parameter K ,  increased. They also attempted to determine the depen- 
dence of streak spacing from K ,  z -2  x but their plotted 
results appear inconclusive. 

In  addition to examining the effect of acceleration on the bursting rate, we wished 
to determine the behaviour of other characteristics of the bursting process and to 
investigate the correspondence to the integral measurements of part 1 .  Accordingly, 

to K ,  x 1 x 
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the test section was operated with the siderails a t  0 from 2' to 16' to cover 
approximately the same range of flow conditions as in part 1. 

4.1. Bursting frequencies 

The effects of acceleration upon bursting frequencies are apparent in figure 5.  No 
matter how they are scaled, all the dimensionless frequencies suggest a significant 
decrease in f b  or increase in its inverse, the average period, as K ,  increases. 

Focusing upon the inner scaling of f b ,  shown earlier to be the most appropriate 
scaling in the case of fully developed flows, one finds that as K ,  decreases towards 
lo-' the bursting frequency approaches the values observed for fully developed 
turbulent flows. A t  hr, = 1 x u:/itfb is 300, nearly 7 0 %  higher than the value 
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a t  Kv = 0;  a t  K ,  = 2 x one finds a threefold increase, and K ,  = 3-4 x 10-6 
indicates a fifteenfold increase, with the curve beginning to tend asymptotically 
towards infinity. This tendency implies that  the flow would be effectively laminar 
for K ,  larger than about 3.4 x This finding is in accord with the data of part 
1 in the same test section and with the data of Moretti & Kays (1965), Nine  et al. 
1967), Blackwelder & Kovasznay (1972) and Jones & Launder (1972) in different 
geometries using other techniques. The agreement on the value of K ,  for apparent 
laminarization assures one that the earlier studies, based upon flows in nozzles or 
between inclined plates in which the contraction was due to  reduction in the direction 
perpendicular to the plates rather than in the lateral (spanwise) direction as in the 
present study, are valuable guides to prediction of laminarization regardless of 
geometry. As in part 1 ,  the value of K ,  where the results begin to  differ significantly 
from the fully turbulent case is less clear, but using the best-fit curve as a guide i t  
might be taken as near K ,  = 6 x lo-'. 

is 
evident when the results are presented in terms of outer scaling 2Vlsfb. The use of 
is, the half-plate spacing, instead of 6, the boundary-layer thickness, only makes the 
trend more conservative, since any boundary-layer thinning with acceleration would 
accentuate the increase in outer scaled burst period with acceleration parameter. If 
one applies the results of Blackwelder & Haritonidis (1981) for hot-wire probes, 
correction for spatial averaging effects in the wall shear-stress sensor would also tend 
to accentuate this trend. (Exaggerating this effect further is the observation by 
Simpson (1979) that  the spacing A: of the streamwise structures increases as the 
acceleration parameter increases.) These corrections would tend to  increase burst 
frequencies at the high Reynolds numbers which correspond to the lower values of 
the acceleration parameter. Thus, burst periods would be decreased further a t  the 
left side of the curve. We also note that as K ,  decreases there is no obvious approach 
to the corresponding fully developed, turbulent behaviour since 2 li/sfb varies with 
Re, in that  case. To provide a meaningful criterion for a fully turbulent limit on the 
basis of 2 V/sfb would require consideration of K ,  and Re, simultaneously. 

The same asymptotic increase in burst period as K, increases near 3-4 x 

4.2. Conditionally averaged sweep patterns 
Families of conditionally averaged time histories have been selected a t  approximately 
equal Reynolds numbers and varying acceleration parameters to  compare with the 
results for fully developed flows. Figure 6 presents typical results versus both outer 
and inner time scaling at a Reynolds number of about 12000. Additional families were 
compared a t  Re x 8000, 18000 and 23000 with the same qualitative conclusions. 

At a given Reynolds number, neither time scaling shows a clear advantage over 
the other. Also, there is no large variation in the shape of the time-averaged signals 
until the acceleration parameter reaches K ,  z 2 x That is, the sweep pattern 
is essentially invariant until K ,  approaches this value even though the non- 
dimensional bursting frequency begins to  drop considerably for K ,  5 1 x At 
higher values than K ,  x 2 x the recovery or decay of the sweep phase becomes 
slower than in the fully developed or moderately converging runs in either time 
scaling. 

Considering the magnitude of the peak of the event, defined previously as AT, one 
may observe different behaviour when non-dimensionalized by t and by r,,,. There 
is some scatter in the non-dimensional magnitudes AT/? but no clear trend versus 
K V .  When normalized as AT/T,,, there is evidence of an increase in magnitude as 
K ,  increases above As may be seen in table 1, this latter observation is partially 
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a consequence of a decrease in rrmS/;i in some runs a t  large acceleration parameters. 
The burst events may consequently be considered to provide a greater percentage 
of the total turbulent activity in the cases of higher acceleration. 

4.3. Sweep times 

The widths of the conditionally averaged traces can be studied in terms of the 
characteristic time defined in $2.4 and called the sweep time in the present work. 
These times are presented in figure 7 in terms of inner, outer and mixed scaling with 
the lateral convergence angle f3 (which causes the acceleration) used as a parameter. 
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FIGURE 7 .  Dimensionless sweep times in laterally converging flow; symbols as in figure 5.  

Over the range of the present experiments, inner scaling shows less sensitivity to the 
acceleration parameter. However, both Reynolds number and acceleration parameter 
are variables on this figure and, for each fixed angle, Re decreases as K ,  increases 
so the reader can gain some further insight into the trends by examining one group 
a t  a time. 

Since K ,  is nominally zero for the fully developed flows, the comparable data of 
figure 4 cannot be plotted directly on this logarithmic coordinate; however, for 
convenience, the arrows on the left side of the figure show their range. Alternatively, 
one can consider the trends of the data for 0 = 2' as primarily representative of the 
effects of Reynolds number variation, with Re increasing from right to left. 

Considering u$tts/v, sweep times scaled by inner variables, one sees the data a t  
0 = 2' are dominated by the decrease in Re as K ,  increases and u i  t s /v  decreases, as 
would be expected from figure 4. The data a t  0 = 8' and 16' demonstrate that 
acceleration tends to increase this non-dimensional sweep time since, despite the 
decrease in Re with increase in K,,, u$ t s / v  increases with Kv7. It appears that  below 
K ,  w the effect of varying Re is stronger, while above K ,  w 2 x lop6 
acceleration is dominant. With the exception of one low data point, the measurements 
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FIGURE 8. Fractional duration of sweep time in laterally converging flow; 
symbols as in figure 5.  

at  the intermediate convergence angle of 19 = 4' appear to show the consequences 
of these competing trends in the vicinity of K ,  = lop6 : overall u$ tS/v  is approximately 
constant, but below K ,  = lop6 a slight decrease may be discerned, and above 10+ 
the two points increase slightly with K,. 

When presented in terms of mixed scaling these data show the same trends as for 
inner scaling, both for fully developed and accelerated flows. With outer scaling the 
trends are different. Figure 4 showed that 2Vts/s increases as Re decreases; figure 
6 (a )  indicates a tendency for 2 VtJs  to increase with K ,  at a constant Re. Thus, as 
K ,  is increased a t  constant 0 the two trends reinforce each other to provide the overall 
pattern, which appears to show a large variation with K ,  a t  the bottom of figure 7 .  

4.4. Sweep-time ratio 

An alternative view of the trend from fully turbulent flow to essentially laminar flow 
as acceleration is increased is provided by examining the product t ,  f b .  As noted 
earlier, it  is like an intermittency function for the most energetic part of the bursting 
process, except that  its maximum value is not unity but a value of fully turbulent 
flow (increasing approximately from 0.06 to  012 as the Reynolds number increased 
from 9000 to 47000 for fully developed flow with the present detection scheme and 
parameters). With a sensitive detection threshold, a value of zero would correspond 
to effectively laminar flow. Figure 8 presents the burst data in this form. 

It will be recalled from part 1 that  laminar predictions agreed with mean 
measurements when K ,  was greater than about 4 x lop6. The non-dimensional sweep 
time increases with K ,  with each of the three time scalings considered, but from figure 
5 it could be seen that the average time between bursts increases even more. 
Consequently the fraction of time that the sweep event occurs is seen to decrease as 
K,  increases and appears to  extrapolate to zero near K, = 4 x These measure- 
ments and the results for bursting frequencies in $4.1 confirm the determination 
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of effectively laminar flow by the techniques of part 1 .  Likewise, the intermediate 
flow regime of part 1 - between fully turbulent and essentially laminar - is seen to 
correspond to a reduction in this sweep-time ratio and to a reduction in the bursting 
frequency. 

5. Conclusions 
Instantaneous measurements of the wall shear stress were made with a flush- 

mounted heated-filament sensor for flows in which the lateral duct dimension could 
be adjusted to converge, resulting in acceleration of the flow in the streamwise 
direction. The sensor was of fixed physical size throughout the experiment. For the 
27 flows examined, the Reynolds number based upon hydraulic diameter ranged from 
7600 to 47 200, and the dimensionless acceleration parameter 

v av 
v ax K" = 2- 

ranged from 0 to 3.4 x It was found that a typical burst pattern could be 
identified by processing the signal via the VITA technique with conditional averaging. 
This burst pattern found from the wall shear stress resembled that found by 
Blackwelder & Kaplan (1976) for the streamwise velocity fluctuation at yf = 15. 

For fully developed flows, i.e. flows in which lateral convergence and acceleration 
were zero, dimensionless bursting frequencies were essentially independent of Rey- 
nolds number when scaled with inner variables. Thus, inner scaling was found to be 
preferable to outer scaling. However, sweep times and magnitudes of the conditionally 
averaged time histories varied slightly with Reynolds number with either scaling. 

For flows accelerating due to lateral convergence, bursting frequencies approached 
the values for fully developed flow as K ,  was reduced towards lo-', and approached 
zero as K ,  approached 4 x with a continuous variation between these limits. 
These observations essentially confirm the indications of flow regimes deduced in part 
1 by examination of local and integral mean wall parameters. 

While acceleration resulted in great decreases in bursting frequency, when scaled 
in terms of inner or outer variables the sweep time and the time history of the 
conditionally averaged wall shear stress were less affected. In  particular, the sweep 
pattern remained essentially invariant until K ,  approached about 2 x while the 
non-dimensional bursting frequency dropped considerably after K ,  exceeded about 
1 x All of the time histories exhibited rapid increases in shear stress followed 
by slower decays, The sweep time increased, but the ratio of sweep time to average 
burst period decreased, and the magnitude Ar/r,,, increased slightly as the 
acceleration parameter increased. These observations were most evident for 
K ,  5 As with the effects of Reynolds number in non-accelerated flows, results 
presented in terms of inner or wall scaling were generally less sensitive to acceleration 
than those normalized by outer scaling. 
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FIGURE 9. Dependence of dimensionless bursting frequencies upon threshold level for fully 
developed flow: x , k = 0.15; m, 0.30; +, 0.45. 

Appendix. Threshold-level dependence of bursting frequencies 
The results of any conditional analysis of turbulent signals are dependent upon 

rather arbitrary choices of analysis techniques and the parameters employed in the 
implementation of these techniques. In  the VITA technique of Blackwelder & Kaplan 
(1976) used in this study, choices of conditional averaging period T and threshold 
level k must be made. The recommendation of Blackwelder and Kaplan that 
Tu$/v = 10 was found to yield averaging times that scaled well with changes in the 
burst/sweep structure induced by acceleration. That is, the ratio of burst length to 
T appeared to remain approximately constant. Consequently, their recommendation 
for T was employed. 

However, the threshold level ( k  = 1.2) employed by Blackwelder & Kaplan, for a 
velocity sensor a t  y f  = 15, was found to detect very few burst events in the signal 
trace of the flush-mounted shear-stress sensor used in the present study. As previously 
discussed, the choice of k is quite subjective, and different values of it yield different 
bursting frequencies. The choice of k = 0 3  was made by having three separate 
observers examine the entire trace of a high-Reynolds-number zero-acceleration flow 
and count the number of burst events that were apparent to them. A similar 
procedure was followed by Crow & Champagne (1971) when detecting large-scale 
structures in round jets from flow-visualization cine films. The basic criterion used 
by the observers in this study was that, when an event occurs, the shear stress should 
enhibit a very rapid and strong increase followed by a slow decrease. It was found 
that analysis using a value of k = 0.3 resulted in a number of burst detections close 
to the average number counted by the three observers. 

While the bursting frequencies reported do depend upon the value of k employed, 
it is believed that the trends reported in this work are independent of the value of 
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FIGURE 10. Dependence of dimensionless bursting frequencies upon threshold level for laterally 
converging flow; symbols as in figure 9. 

k. A test of the dependence of these trends upon the threshold level was performed 
by analysing eight runs using threshold levels of k = 0.15,0*30 and 0.45. The resulting 
non-dimensionalized burst frequencies are presented in figure 9 for fully developed 
flow cases and in figure 10 for accelerating-flow cases. The same trends are apparent 
for each value of k .  Thus one may conclude that the trends reported here are not 
dependent upon the parameter values employed in the conditional-analysis scheme. 
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